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Abstract. This paper provides an overview of the title
paper by Perdew, Parr, Levy and Balduz [Phys Rev
Lett 49:1691 (1982)]. The title paper extended density
functional theory to fractional electron number by
an ensemble approach and proved that the energy is a
series of straight lines interpolating its values at integer
numbers of electrons. It also established that the highest-
occupied exact Kohn—Sham orbital energy is the nega-
tive of the ionization energy, and showed that the
exchange-correlation potential jumps by a constant as
the number of electrons increases by an integer. These
results are fundamental and continue to inspire devel-
opments in density functional theory.
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The original density functional theory (DFT), based on
Hohenberg-Kohn theorems [1], Kohn—Sham equations
[2] and the Levy constrained search formulation [3], is
a rigorous approach for determining the ground-state
density and ground-state energy for any N-electron
system. Here the electron number

N = [ dnt) (1)

is an integer. The electronic ground-state energy of the
system is a functional of the electron density p,

E[p] = Flp] + Vaelp] (2)

where F[p] is the universal density functional and Vpe[p]
is the electron-nuclear interaction. F[p] = Ti[p] + J[p] +
Ey[p], where Ti[p] is the kinetic energy of the Kohn—
Sham non-interacting reference system with the same
density p, Jlp] = %f%dr dr' is the classical
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electron—electron repulsion energy, and Exc[p] is the
exchange-correlation energy functional.

Since DFT uses the electron density as the basic
variable, instead of the wave function in the conven-
tional quantum theory of electronic structure, not only
would it be advantageous to have the energy functional
and derivatives defined for densities with fractional
number of electrons, but it is also necessary to treat
systems with a fractional number of electrons. To show
this necessity, one only needs to consider the dissociation
of HJ. In the exact quantum-mechanical theory, at the
dissociation limit, H(a)-H(b)" and its nuclear permu-
tation H(a)™ — H(b) are two degenerate states. Any
linear combination of these two states is also a ground
state of the dissociation, including the state
H%* — H%5*_ At this limit, we have two independent
systems each with fractional numbers of electrons. As in
Fig. 1, which shows results, obtained from a typical
ab initio calculation, we can see that the one-electron
system becomes two half-clectron fragments when Hj
becomes dissociated. The foregoing argument also holds
true for the dissociation of any homonuclear diatomic
molecular ion 47 .

In the title paper by Perdew, Parr, Levy and Balduz
(PPLB) [4], DFT was extended to a fractional number of
electrons based on the zero-temperature grand canonical
ensemble theory. Note that the ensemble description of
electronic structure problems goes back to Gyftopoulos
and Hatsopoulos [5]. PPLB [4] showed that at zero
temperature the ground state of a system with a nonin-
teger numbers of electrons is an ensemble of two pure
states with integer numbers of electrons and Ey, , the
ground-state energy of a (N + g)-electron system, is a
linear combination of Ej, and E}_,, the ground-state
energies of the corresponding N- and (N + 1)-electron
systems; namely

E]gv+q = (1 —q)Ey + qEJgVH ) (3)

where 0 < ¢ < 1. The energy functional was also for-
mulated in exactly the same form as in Eq. (2), with the
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Fig. 1. Hartree—Fock electron density for H; along the bond axis
with the bond middle point at zero. Solid line for Hy with bond
length 4.0 A and dashed line for H with bond length 1.1 A

universal density functional defined for a fractional
number of electrons by the Levy constrained search [3]

Flpyig) = min Tr[(T + V)] )

F—pyniy

where 7 and V. are the kinetic and electron—electron
repulsion operators, and I' is any many-electron density

operator that delivers the density py,, with fractional

numbers of electrons. The type of I' allowed is a
statistical mixture of N- and (N + 1)-electron systems.
The electron density entering the definition of the energy
functional is also an ensemble sum

Pnig = (1 = q)py +qpyy1 - (5)

These are fundamental results in DFT. The density
functional extended for a fractional number of electrons
based on the ensemble approach gives the correct
description for fractional electron number systems in
the dissociation limit of Hj. A great challenge remains
to construct an energy functional E[p] that would have
the correct behavior for fractional electron number
systems, as described in Eq. (3).

Based on PPLB’s work, Perdew [6] generalized the
sum rule for the exchange-correlation hole to the frac-
tional number of electrons, and Perdew and Levy [7]
reached the conclusion that the local density approx-
imation (LDA) and the generalized gradient approxi-
mation (GGA) energies were too low for systems with
fractional numbers of electrons by analyzing this gen-
eralized sum rule.

Functionals with electron self-interaction excluded do
very well in approximating the exact relation of Eq. (3)
[7]. Based on the Egs. (3) and (5), Zhang and Yang [8]
have recently derived a new scaling relation necessary
for the exchange-correlation functional to be self-inter-
action-error free.
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Exc[gpi] = quXC[pl] ) (6)

for 0 < ¢ < 1; however, all widely used GGA and hybrid
GGA /exact-exchange functionals [9—12] fail to obey this
relation. This failure leads to the consequence that even
when the self-interaction error of a functional for
systems with integer numbers of electrons is quite small,
this error will significantly increase for fragments with
noninteger numbers of electrons and so the resulting
total energy can be too negative. This is demonstrated to
be the main reason for the widely used functionals’
failure to describe the dissociative behavior of some
radicals correctly, such as Hj,Hej,CO~; and it has
been pointed out that the large self-interaction error for
fractional numbers of electrons also accounts for the
difficulty of approximate DFT to describe transition
states of some chemical reactions and some charge-
transfer complexes [8].

PPLB [4] have also given the physical meaning of
the highest-occupied Kohn—Sham orbital energy. The
Kohn—-Sham orbital energies usually have no physical
meanings; however, PPLB showed that for the exact
density functional, the highest-occupied Kohn—-Sham
eigenvalue for all electron numbers M between the in-
tegers N — 1 and N is the negative of the exact ionization
energy of the N-electron system, i.e.,

M ——1Iy, (N—1<M<N) (7)

M o =—Ay, N<M<N+I1), (8)
where Iy and Ay are the ionization energy and electron
affinity of the N-electron system. Recently, there have
been some debates on this subject [7, 13, 14] and two new
independent proofs have been provided [7, 15]. From an
exact solution of a two-electron problem, Hooke’s atom,
this ionization energy theorem is confirmed [7].

Another major result from the PPLB paper [4] is the
derivative discontinuities of the energy and functional,
i.e., as M increases by an integer N, the chemical po-
tential and the Kohn—Sham potential both jump by a
constant. The discontinuity of the chemical potential
resolved a paradox of the chemical potential equaliza-
tion principle [4, 16, 17]. The discontinuity of the exact
Kohn—Sham potential, which recently has also been
“exactly” constructed by Harbola [18], represents an
important feature of the ground-state energy functional
and is crucial for describing the band gap in an insulator
or semiconductor [17, 19, 20]. Continuum approxima-
tions to exchange-correlation functionals, including all
current widely used LDA and GGA functionals, fail to
produce the correct derivative discontinuity. This failure
accounts for the difficulty of LDA and GGA to describe
the band gap correctly. Recently this property of deriv-
ative discontinuity has been used by Tozer and Handy
[21] to design new exchange-correlation functionals.

In summary, the title paper is a seminal contribution
that extended DFT to a fractional number of electrons.
All the theorems, relations and properties for the exact
DFT mentioned above, which are either presented in the
PPLB paper or were developed later based on it, are not
only very interesting in theory, but have also become
more and more important from the practical viewpoint,
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especially in the development of a new generation of
the exchange-correlation functional. Some well-known
difficulties for the widely used functionals, such as the
dissociate behavior of some radicals, the reaction barrier
of some reactions and the band gap, are found to orig-
inate from the failure to satisfy these exact relations.
This kind of difficulty for approximate functionals can-
not be solved in the present framework of GGAs. We
believe that the future breakthrough to further extend
the applicability of density functional calculations needs
a novel approach to construct the exchange-correlation
functional that has the correct behavior for a fractional
electron number, as shown by this title paper.
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